Efficacy of a C1–C2 Self-sustained Natural Apophyseal Glide (SNAG) in the Management of Cervicogenic Headache

Headache is a common condition frequently encountered by physiotherapists in clinical practice. Cervicogenic headache has been classified by the International Headache Society (IHS) and accounts for 15% to 20% of all chronic and recurrent headaches. Individuals with chronic cervicogenic headache experience considerable restriction of daily function, limitation of social participation, and emotional distress. In addition, these individuals report a lower quality of life than healthy individuals.

The IHS defines cervicogenic headache as “pain, referred from a source in the neck and perceived in 1 or more regions of the head and/or face.” Headache can arise from a variety of structures of the cervical spine, including the zygapophyseal joints (occiput-C3). Major signs and symptoms of cervicogenic headache usually include unilateral head pain without side-shift, combined with neck pain and restriction of neck movement.

Despite the IHS classification, diagnosis of cervicogenic headache is difficult because up to 70% of individuals with frequent intermittent headache report accompanying neck pain. It is therefore not unreasonable to suggest that individuals who suffer from headaches may receive unwarranted treatment to the neck unless an accurate evaluation is made. Zito et al. have confirmed the importance of examination of the C1-C2 segment in cervicogenic headache diagnosis. The relative importance of C1-C2 as a primary cause of cervicogenic headache is also supported by Aprill et al.

To assist in the diagnosis of cervicogenic headache and, in particular, C1-C2 segmental dysfunction, Hall and Robinson have suggested using the cervical
flexion-rotation test (FRT), as described by Dvorak et al. Hall and Robinson have found that subjects with cervicogenic headache have an average of 17° less rotation toward the headache side in the FRT, in contrast to those with no headache or migraine with aura. Additional studies have supported these findings. In addition, Ogince et al. found that movement impairment found on the FRT has high sensitivity (91%) and specificity (90%) to identify cervicogenic headache. Thus the FRT is a useful measure of cervical movement impairment and may be able to assist diagnosis of cervicogenic headache.

Manual therapy is often advocated for managing cervicogenic headache, although few randomized controlled trials have evaluated its efficacy in isolation. One trial with strong methodological quality and a large sample size found that manual therapy was beneficial in reducing cervicogenic headache.

Mulligan has described a novel approach for the self-management of articular dysfunction in cervicogenic headache. In this approach an accessory motion combined with spinal active movement (C1-C2 self-sustained natural apophyseal glide [SNAG]) is used to restore normal range of C1-C2 rotation when the FRT reveals substantial rotation limitation at this segment. The C1-C2 self-SNAG targets C1-C2 dysfunction by emphasizing C1-C2 rotation using a cervical self-SNAG strap. Although the Mulligan concept is frequently used in clinical practice, there is limited evidence for its effect and there are no clinical trials that have investigated this technique for the treatment of cervicogenic headache.

Therefore, the purpose of this study was to determine the efficacy of the C1-C2 self-SNAG in subjects with cervicogenic headache and a positive FRT test. It was hypothesized that the C1-C2 self-SNAG would have significant immediate effects on FRT range of motion, with long-term reduction in self-reported headache symptoms, when compared to a placebo intervention.

METHODS

This study employed a double-blind, randomized, placebo-controlled trial design. We investigated the treatment efficacy of the C1-C2 self-SNAG on immediate change in FRT range of motion and long-term change in self-reported headache symptoms. Only immediate change in range of motion was evaluated, with long-term change in self-reported headache symptoms as the main outcome measure. Based on clinical experience, a large treatment effect was expected for improvement in rotation with the FRT (10° for the SNAG intervention, minimal change for the placebo). With power set to 80% and the level of significance for alpha at .05, a minimum of 9 subjects per group was determined to be required.

Subjects were recruited from advertisements and medical clinics. A total of 122 participants expressed interest in participating in the study. These subjects were then screened by telephone for suitability according to inclusion and exclusion criteria shown in **TABLE 1**. Diagnostic criteria for cervicogenic headache were based on guidelines of the Headache Classification Subcommittee of the IHS and Cervicogenic Headache International Study Group.

Suitable subjects were also required to exhibit a “positive” FRT (FIGURE 1) as described by Stratton and Bryan, with a reduction in rotation of at least 10°. This definition compares favorably with a cut-off score of 32° reported by Ogince et al.

Of the 122 subjects interested in joining the study, 43 were assessed by telephone as being suitable for potential participation. Subjects were principally excluded because they were receiving physical treatment for their headache. Of the 43 subjects found suitable for inclusion and then assessed using the FRT, 11 were excluded due to a lack of movement restriction at C1-C2 based on the FRT. The average amount of rota-

![FIGURE 1. Flexion-rotation test using a modified cervical range of motion device.](https://www.jospt.org/SupplementalVideoOnline_2007_03_0101_0314_001_001.jpg)
tion in these excluded subjects was 44° (SD, 3) to the right and 45° (SD, 5) to the left. Thus a total of 32 subjects were included in the study, 16 in each group, having fulfilled all entry criteria. All 32 subjects were able to complete the intervention and there were no dropouts. A flow chart indicating flow of participants through each stage of the study is shown in Figure 2.

Materials and Measurements
The amount of rotation in the FRT was measured using a modified cervical range of motion (CROM) device (floating compass; Plastimo Airguide, Inc, Buffalo Groove, IL) according to the method described by Hall and Robinson* and Ogince et al. Two Velcro straps (Figure 1) were fixed to the subject's head, traversing the transverse and coronal planes, respectively. The CROM was attached to the center of the coronal Velcro strap to measure cervical rotation in maximal flexion. This method of assessment has been shown to have high reliability both within and between examiners. The FRT was performed with the subject supine on a physiotherapy treatment plinth. The cervical spine was fully flexed by the examiner and the head was passively rotated to the left and right. Range was determined by either the onset of pain or firm resistance (Figure 1). Pretreatment and immediate posttreatment values for rotation on the FRT were recorded.

To determine intratester reliability of the measurement of the FRT, 10 asymptomatic subjects were tested on 2 occasions, with a 15-minute rest between trials. During the rest, the modified CROM was removed and the subject was allowed to move freely around the room. Significant correlation between scores was demonstrated by a single-measure intraclass correlation coefficient (ICC

A headache questionnaire was used to determine an index of headache severity (score, 0-100; maximum score, 100). This index is based on a composite score of headache intensity, frequency, and duration, with equal weighting given to each element. This index has been shown to be reliable. Test-retest measures of 20 subjects with cervicogenic headache over 24 hours showed high levels of reliability, with an ICC of 0.92. In addition to this index, subjects were asked to indicate on a 10-cm visual analogue scale (VAS), beginning with “no change” and ending with “complete recovery,” how much benefit they perceived as a result of the treatment. Niere and Robinson recommended the combination of the headache index, together with estimation of treat-
ment benefit, to determine if a manual therapy treatment program had a beneficial effect for cervicogenic headache.

Exercise compliance was evaluated by the questionnaire using a scale ranging from 1 (no exercise) to 5 (daily exercise). Finally, using a questionnaire at 12 months, subjects were also asked whether they continued to do their prescribed exercise.

Procedures

The procedures were undertaken by qualified physiotherapists under the supervision of an accredited “Mulligan concept” teacher who had 15 years of experience in using the FRT and C1-C2 self-SNAG.

The researchers conducted the initial telephone interviews and screened for study entry criteria. Subsequently, an assessor evaluated suitable subjects using the FRT. Subjects with a reduction in range of more than 10° to 1 side were included in the study. Range of motion for the FRT was recorded and the headache questionnaire administered before subjects were randomly assigned to the C1-C2 self-SNAG or placebo group. Participants were allocated to treatment group using lottery ticket randomization chosen from a concealed container.

Appropriate treatment was then provided, where 1 researcher taught the C1-C2 self-SNAG while another researcher taught the placebo. Equal emphasis was given to both techniques to ensure that the patients were unaware of whether they received the active intervention or not.

The subjects in the experimental group were mobilized with a C1-C2 self-SNAG (FIGURE 3) using a cervical self-SNAG strap (Manual Concepts, Booragoon, Australia). The technique is described in detail by Mulligan. Essentially, the thin, rubber-covered strap was positioned on the posterior arch of C1 and drawn horizontally forward across the face. The purpose of the strap is to facilitate rotation at C1-C2 in the same direction as found to be limited on the FRT (FIGURE 1). The subject applied forward pressure on the strap and turned the head toward the restricted side of rotation, sustaining end range for 3 seconds. The treating therapist assisted with positioning of the strap and applied end range overpressure in rotation. It is essential that the technique be performed in the pain-free range and no symptoms, other than stretching, are provoked. Subjects were given 3 trials to familiarize themselves with the treatment technique before 2 repetitions were performed.

The placebo involved a sham mobilization at C1-C2 using the cervical self-SNAG strap. The strap was positioned as previously described. The subject was then asked to apply a 3-second sustained forward pressure at C1, without moving the head. Subjects were given 3 trials to familiarize themselves with the technique, before 2 repetitions were performed. Similar encouragement was given to both intervention groups.

An assessor, blind to group allocation, then remeasured the FRT immediately after the intervention in both groups. Both the assessor and the subjects were blinded to the group allocation. To determine treatment blinding, subjects were asked whether they thought they had received the sham mobilization or active treatment. Subjects were unable to determine correctly which treatment they had received. Only 18 of 32 subjects were able to correctly identify their group, which is not much better than chance.

Subjects were then asked to perform 2 repetitions of the exercise they had been shown, twice daily for the following 12 months. It was stressed to the patient that they should continue to exercise through the duration of the study and to ensure that the exercise was carried out, as demonstrated, without pain. While it is recognized that in normal clinical practice prescribed exercise should be checked at a short interval to ensure correct application, this was not undertaken in this study.

Exercise compliance was assessed at 4-week follow-up using a self-report scale ranging from 1 (no exercise) to 5 (daily exercise). In addition, at 12-month follow-up subjects were asked whether they continued to exercise (yes or no). Assessment of exercise compliance was incorporated with the headache index questionnaires.

Each subject was given 2 copies of the headache questionnaire that was to be completed and returned to the researchers at 4 weeks and 12 months following the initial visit. Subjects were contacted by telephone, sometimes on multiple occasions, when they did not return the questionnaire at the stated time. Subsequently, there was 100% compliance with respect to questionnaire return.

Approval for this study was granted by Curtin University Human Research Ethics Committee. Subjects were able to withdraw from the study at anytime and gave written informed consent prior to participation.

Data Analysis

Statistical analysis was carried out using SPSS V12.0 (SPSS Inc, Chicago, IL). Alpha was set at .05 for each analysis. Age, headache history, headache severity index, and range of rotation in the FRT at baseline for both groups were analyzed with an independent t test.

A general linear model with a repeated-measures factor of time (preintervention, postintervention) and a between-subjects factor of group (C1-C2 self-SNAG, place-
bo) was used to determine the difference between the 2 groups in the amount of rotation on the FRT immediately before and after the initial instruction and practice visit. Similarly, a general linear model with a repeated-measures factor of time (preintervention, 4 weeks postintervention, 12 months postintervention) and a between-subjects factor of group (C1-C2 self-SNAG, placebo) was used to test for change in the headache severity index. Assumptions underlying the repeated-measures general linear model were all met. The independent variable headache severity index and amount of rotation on the FRT had normal distributions (Shapiro-Wilk test, homogeneity of variance test, and the Mauchley test of sphericity were not significant).

RESULTS

Baseline characteristics across both groups were similar and are summarized in Table 2. No significant differences were detected between the 2 groups in terms of age, headache history, FRT range, and headache severity index score. In 13 of 16 subjects from both groups the direction of FRT restriction was to the right and the remainder to the left. Gender distribution in both groups was similar: 11 of 16 were female in the C1-C2 self-SNAG group and 8 of 16 were female in the placebo group.

Immediately following the intervention, the amount of rotation improved in both the C1-C2 self-SNAG ($t = -7.03, df = 15, P < .001$) and placebo group ($t = -4.50, df = 15, P < .001$). However, this improvement was significantly greater following the active treatment ($F_{1,19} = 15.91, P < .001$). Change scores with 95% confidence intervals for amount of rotation during the FRT immediately following the intervention are shown in Figure 4. Rotation increased by 15° (SD, 9°) to 39° in the C1-C2 self-SNAG group, but only by 5° (SD, 5°) to 32° in the placebo group. Assessment of the confidence intervals for the change scores revealed with 95% certainty that the true mean difference in amount of rotation on the FRT following the application of a C1-C2 self-SNAG is between 11° and 20°, with a placebo effect of between 3° and 8°.

For the headache severity index there was a significant group-by-time interaction ($P < .001$). For the interaction, the F value and effect size were large ($F_{1,60}^* = 50.51, P < .001$, partial $\eta^2 = 0.77$). Figure 5 charts the estimated marginal means (predicted means of each dependent variable across levels of each factor) for the headache index preintervention and at 4 weeks and 12 months after the start of the intervention, indicating the interaction and change over time for both groups. Post hoc analysis revealed a significant difference between the C1-C2 self-SNAG and placebo group at 4 weeks ($F_{1,39} = 21.69, P < .001$) and 12 months postintervention ($F_{1,30} = 26.74, P < .001$). Descriptive statistics and change scores with 95% confidence intervals for headache severity index score at preintervention, 4 weeks postintervention, and 12 months postintervention are shown in Table 3. Assessment of these confidence intervals reveals with 95% certainty that the true mean difference in headache index after 12 months using a C1-C2 self-SNAG is between 22 and 35 points (mean ± SD change, 54% ± 17%), while the placebo had a change of between 1 and 12 points (mean ± SD change, 13% ± 21%).

Visual inspection of the subjects’ reports of treatment benefit (Figure 6) shows the majority of responses towards the maximum perceived benefit for the individuals in the C1-C2 self-SNAG group and the reverse for those in the placebo group.

Table 2

<table>
<thead>
<tr>
<th>Subject Characteristics at Baseline Prior to Intervention*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C2 Self-SNAG Group</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Age (y)</td>
</tr>
<tr>
<td>Headache history (y)</td>
</tr>
<tr>
<td>Headache severity index2</td>
</tr>
<tr>
<td>FRT preintervention (°)</td>
</tr>
</tbody>
</table>

* Abbreviations: FRT, flexion-rotation test; SD, standard deviation; SEM, standard error of mean.
1 Difference between groups.
2 Headache severity index (range, 0-100; larger scores indicate greater severity).
3 Rotation towards restricted side only is presented.
Exercise compliance was greater in the C1-C2 self-SNAG group than in the placebo group at the 4-week follow-up. Furthermore, at the 12-month follow-up 10 out of 16 subjects in the C1-C2 self-SNAG group continued to exercise, while only 2 of 16 in the placebo group continued to do so.

DISCUSSION

This study found that headache symptoms, when measured by a headache index, improved significantly more in subjects treated with a C1-C2 self-SNAG than in subjects treated with a placebo. This difference was noted at 4 weeks after the initiation of treatment and maintained at 1-year follow-up. In addition, subjects’ self-report of treatment benefit favored the C1-C2 self-SNAG technique over the placebo treatment (FIGURE 6).

Our study employed a combination of measures to determine treatment effect. The IHS Committee on Clinical Trials recommended that headache indices should not be used in the evaluation of headache trials. We used a measure of headache severity specifically developed by Niere and Robinson to overcome the limitations suggested by the IHS, as well as a scale indicating the subjects’ estimation of treatment effect. The index developed by Niere and Robinson was shown to be sensitive to change; however, the authors suggested incorporating the additional treatment effect scale, which was used in this study.

Recommendations for determination of treatment response have included a greater than 50% reduction in headache symptoms. Others have suggested a standard of 50% pain relief; but this is no more than an arbitrary figure. In this study we found a 54% reduction in headache symptoms at 12 months after subjects commenced using a C1-C2 self-SNAG, as compared to a 13% reduction for those subjects using a placebo intervention.

Exercise compliance was investigated at 4 weeks, and it was found that subjects taught the placebo exercised less often than those taught the C1-C2 self-SNAG. It is unclear whether this poor compliance was due to lack of diligence or weak response to the exercise itself.

It must be recognized that there are limitations to only using a headache index and self-report of treatment benefit. We recommend that in future studies parallel outcome measures be employed. These could include medication use or functional capacity. An additional limitation of this study is that no attempt was made to report on whether or not subjects sought alternative intervention. This should also be incorporated in future studies. However, it is logical that the group most likely to seek alternative treatment would be the placebo group. If individuals in the placebo group did seek alternative treatment, it did not appear to impact on the outcome of this study.

Jull et al evaluated mobilization and specific exercise for the management of patients with cervicogenic headache. Combined interventions did not produce a significantly better effect than the single therapies across all outcomes. Nevertheless, there was a 10% better response for the participants who received the combined therapy, which was thought to be clinically relevant. In that study there was a 50% reduction in headache frequency in 71% of subjects receiving manual therapy alone. Direct comparison to our study cannot be made, as that study’s outcome measures were not the same and its subjects received 12 treatment sessions, in contrast to only 1 treatment session in the present study. The results of both studies suggest a significant benefit of manual therapy in the management of patients with cervicogenic headache.

A number of studies have shown manual therapy to be effective in the management of cervicogenic headache. The majority have investigated a combination of manual therapy with exercise, as cervicogenic headache is a disorder of cervical muscular impairment as much as cervical joint dysfunction. For the present investigation we chose not to incorporate exercise for re-education of muscular impairment so that we could evaluate the sole effect of the C1-C2 self-SNAG. We recognize the multidimensional nature of cervicogenic headache and that manual therapy for this con-

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>C1-C2 Self-SNAG Group</th>
<th>Placebo Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache severity index baseline, mean ± SD (SEM)*</td>
<td>52 ± 10 (2)</td>
<td>51 ± 9 (2)</td>
</tr>
<tr>
<td>Headache severity index 4 wk, mean ± SD (SEM)*</td>
<td>31 ± 9 (2)</td>
<td>51 ± 15 (4)</td>
</tr>
<tr>
<td>Change score (95% CI) preintervention to 4 wk postintervention</td>
<td>22 (16, 27)</td>
<td>0 (-7, 6)</td>
</tr>
<tr>
<td>Headache severity index 12 mo, mean ± SD (SEM)*</td>
<td>24 ± 9 (2)</td>
<td>44 ± 13 (3)</td>
</tr>
<tr>
<td>Change score (95% CI) 4 weeks to 12 mo postintervention</td>
<td>7 (2, 12)</td>
<td>7 (-2, 16)</td>
</tr>
<tr>
<td>Change score (95% CI) preintervention to 12 mo postintervention</td>
<td>28 (22, 35)</td>
<td>6 (1, 12)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; SD, standard deviation; SEM, standard error of mean.
* Headache severity index (range, 0-100; larger scores indicate greater severity).
dation should incorporate management of all aspects of this disorder. However, the present study has demonstrated an effective self-management technique for the articular dysfunction of cervicogenic headache requiring minimal therapist assistance. In a cost-driven society, self-management must be seen as a desirable goal. This study has demonstrated some efficacy in that respect. Based on previous studies and our results, we would recommend that in clinical practice the C1-C2 self-SNAG be used as part of a treatment program that includes muscle re-education for overall management of cervicogenic headache.

The restriction of rotation in the FRT observed among the subjects with cervicogenic headache was similar to results found in other studies. While this study reported a mean rotation range of 25^\degree toward the restricted side, Hall and Robinson7 have reported 28^\degree and Oginicz et al22 20^\degree. This restriction contrasts to range available in subjects without headache reported at approximately 44^\degree in each direction.7,8 Other studies have reported mean ranges of 42^\degree in asymptomatic subjects9 and 40^\degree in subjects with migraine headache.23

This is the first published report demonstrating immediate change in range of rotation following a C1-C2 self-SNAG. Range improved by 15^\degree in the C1-C2 self-SNAG group, and much less in the placebo group. As there was no long-term measurement of range of motion, it is not possible to directly relate immediate change in range of motion with reduction in headache symptoms. However, it would seem reasonable to propose—as headache severity has been shown to be directly related to the degree of restriction found on the FRT22—that improving range of motion would have a beneficial effect on symptoms. Indeed Reid et al22 have reported improvements in range of movement, neck pain, and disability following the application of upper cervical SNAGs. These improvements were maintained at 3-month follow-up. Further studies are required to verify that reduction in headache symptoms following the C1-C2 self-SNAG are related to increased movement determined by the FRT.

The data from the subjects assessed for inclusion for the present study are in agreement with studies suggesting C1-C2 as the dominant symptomatic level in cervicogenic headache.3,8,22,38 Of the subjects assessed for inclusion, 32 of 43 were deemed positive on the FRT. These findings give credence to the relevance of the FRT in cervicogenic headache management.

Research is limited in investigating the mechanism of effect of manual therapies. A placebo effect is a definite aspect of any intervention. Expectation is a major part of the placebo effect.6 We ensured that the placebo was a credible alternative that would be difficult for the subject to identify. However, the change in the C1-C2 self-SNAG group was significantly larger than the placebo effect suggesting other mechanisms were responsible.

One possible mechanism by which the C1-C2 self-SNAG may have reduced headache symptoms is by the neuropeptide effect of joint mobilization. In the gate control theory, stimulation of mechanoreceptors within the joint capsule and surrounding tissues causes an inhibition of pain at the spinal cord.14,37 In addition, descending pain-inhibitory systems may be activated, mediated by areas such as the periaqueductal gray of the midbrain.14,23,30,35,37 The end range positioning in rotation with the C1-C2 self-SNAG may engage these inhibitory systems and reduce pain.

Perhaps a less plausible explanation of the increase in cervical rotation range on the FRT is that the C1-C2 self-SNAG decreased joint stiffness. Mobilization is thought to break down adhesions and stretch surrounding tissues. That the improvement in rotation range was immediate suggests that the effect of the C1-C2 self-SNAG technique is more likely related to a neurophysiological change in pain modulation rather than an effect on joint stiffness.

CONCLUSION

This study has demonstrated efficacy of the C1-C2 self-SNAG in reducing cervicogenic headache symptoms sustained over a 1-year period. That a patient can perform this exercise independently at home, without ongoing supervision, exemplifies the potential importance this technique may have in assisting self-management of cervicogenic headache.

ACKNOWLEDGEMENTS

We thank Dr Ritu Gupta and Dr Kathy Briffa.

